US009317456B2

a2 United States Patent

Mallick et al.

(10) Patent No.: US 9,317,456 B2
(45) Date of Patent: Apr. 19, 2016

(54)

(735)

(73)

")

@

(22)

(65)

(30)

METHOD AND SYSTEM FOR PERFORMING
EVENT-MATCHING WITH A GRAPHICAL
PROCESSING UNIT

Inventors: Sudeep Mallick, West Bengal (IN);
Murali Krishna Emani, Hyderabad
(IN)

Assignee: Infosys Technologies Ltd., Bangalore
(IN)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 378 days.

Appl. No.: 13/024,111

Filed: Feb. 9,2011

Prior Publication Data

US 2012/0092352 Al Apr. 19, 2012

Foreign Application Priority Data

Oct. 18,2010 (IN) oo 3054/CHE/2010

(1)

(52)

Int. CI.
GOGF 13/14 (2006.01)
GO6T 1/00 (2006.01)
GOGF 1730 (2006.01)
G09G 5/36 (2006.01)
G09G 5/397 (2006.01)

USS. CL

CPC oo GOGF 13/14 (2013.01); GOGF 17/30

(2013.01); GO6T 1/00 (2013.01); GO9G 5/363

(2013.01); GO9G 5/397 (2013.01); GO9G

2360/08 (2013.01); GO9G 2360/121 (2013.01);

G09G 2360/128 (2013.01)

(58) Field of Classification Search
CPC . GOG6F 13/14; GOGF 2209/5018; GOG6F 9/542;
GO6T 1/00; GO6G 9/46; GO9G 2360/121

USPC oot 345/520,501; 718/102
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

8,103,769 Bl1* 1/2012 Weiseretal. 709/225
8,195,648 B2* 6/2012 Zabbacketal. 707/718
2009/0262131 Al* 10/2009 Suntinger et al. 345/619
2009/0287628 Al* 11/2009 Indecketal. 706/47

2010/0070975 Al* 3/2010 Barkeretal. 718/102

2010/0110083 Al* 5/2010 Paltashev et al. ... 345/506

2010/0220978 Al* 9/2010 Ogikubocccocoiiinn 386/95

2010/0295856 Al* 11/2010 Ferreira et al. ... 345/441

2011/0016132 Al* 1/2011 Okamoto 707747

2012/0008836 Al* 1/2012 Bobbittetal. 382/113
OTHER PUBLICATIONS

Farroukh, A. et al., “Parallel Event Processing for Content-Based
Publish/Subscribe Systems”, Proceedings of the Third ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS,
pp- 1-9 (2009).

(Continued)

Primary Examiner — Hau Nguyen
(74) Attorney, Agent, or Firm —LeClairRyan, a
Professional Corporation

(57) ABSTRACT

A computer-implemented method for event matching in a
complex event processing system includes receiving, with a
computer processing device, a stream of event data; receiv-
ing, with a computer processing device, an event list and an
access predicate list, wherein the event list includes one or
more event data pairs; and identifying, with a graphical pro-
cessing device, patterns in the stream of event data.

15 Claims, 6 Drawing Sheets

GPU /510
GRID 511)" 512
Block (0,0) 720 Black (1, 0)
Shared Shared
Memory Memory

|71g-2i |l | R.gt.., |l | Re:.s..r | l \ Rn:ixter |I

Thread (0,)

Thread (1, 0)

Thread (0, 0) Thread (1, 0)

115
1 610 t s11g¢

771g¢ 772S t

Local
Memary

Local
Memory

Locail
Memory

Local
Memory

730

Global
Memory

5 740 |

[Constant

750 |

|

Texture
T ' Memory

760 |

11

US 9,317,456 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Schmidt, K. et al., “Blending Complex Event Processing With the
RETE Algorithm”, CEP2008: 1st International Workshop on Com-
plex Event Processing for the Future Internet Colocated With the
Future Internet Symposium FIS2008, vol. 412CEUR Workshop Pro-
ceedings CEUR-WS.org, ISSN 1613-0073, (2008).

Progress Software, “An Introduction to Event Processing, Powering
Real-Time, Intelligent Business Applications” (2009).
Fabret, F. et al., “Filtering Algorithms and Implementation for Very
Fast Published/Subscribe Systems,” SIGMOD (2001).

NVIDIA CUDA Programming Guide: Version 1.0, (2007).

* cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 6 US 9,317,456 B2

130 g0
Y
§’110
l 116 15 1
i t 114 T

—
\

112

113

FIG. 1

U.S. Patent Apr. 19,2016 Sheet 2 of 6 US 9,317,456 B2
220 ™
‘\'\
Control ALU H ALU
210 ™
- ALU }j ALU
~— |Cache
111
230
114 — /I
L
DRAM
)
112
FIG. 2
330 —
320 m\ﬁ\/} Contol l ALU AL ALU ALU ALU ALU
310 _ Cache l
~ Contno!l ALU ALU ALU ALU ALU ALU
Cache l
Control I} ALU ALU ALU ALU ALU ALU
Cache l
Control | ALU ALU ALU ALU ALU ALU
1 1 5 J Cache
Control || ALU ALU ALU ALU ALU ALU
Cache
DRAM
340 S|

FIG. 3

US 9,317,456 B2

U.S. Patent Apr. 19,2016 Sheet 3 of 6
1M1
\‘*\
CPU o
Application
440~ —
430) Libraries
v Y
420 Runtime
Y
410 .
{ Driver
A
(114
400
\ 4
GPU

¢

115~

U.S. Patent Apr. 19,2016 Sheet 4 of 6 US 9,317,456 B2

CPU GPU 510 ‘“‘xﬂ\\
511 { G 512 513 |
/ Block Block Block
Kernel |« » ©.0 .0 @9
v 114 - Block Block Block
530 (0, 1 1,1 @1

514~ 515~ 516

< 521

Grid
Block Block Block Block
(0, 0) (1,0) @, 0) 3,0

Kernel = >

Block Block Block Block
\ j (0. 1) 1.1 @1 @1
Block Block Block Block
(0, 2) 1,2 @ 2 (3,2
— 522

111 115 Lo

U.S. Patent

Apr. 19,2016 Sheet 5 of 6 US 9,317,456 B2
Block (0, 0))f”” 610 - 611 (”“‘ 612 (“’613
Thread Thread Thread Thread
0,0 (1, 0) 2,0 3,0
Thread Thread Thread Thread
0,1 (1, 1) 2,1 3.1
(614 (615 616 617
J /))
o /
Thread Thread Thread Thread
@, 2) (1, 2) 2.2) 3, 2)
(618 (619 [620 621
J / p P
e
)
511

FIG. 6

U.S. Patent Apr. 19,2016 Sheet 6 of 6 US 9,317,456 B2

GPU g 510
GRID 511 512
/ /
Block (0,0) 720 T Block (1, 0)
Shared Shared
Memory Memory
710 7 § v Y Y
Register Register Register Register
‘ g IV [9 lV l 9]V l 9 1\7
Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)
1 15 (> C A AAA A A4 %A FYVYY (f\ A AAA
111810y 611" ¢ 771"y 772" ¢
Local Local Local Local
Memory Memory Memory Memory
<
730~
114
//
cPu \ ¥ 4 Y Y
Y Global
- [‘1 Memory f 740
‘ i ! Constant
- ! l Memory 750
H
i
Rt Texture
T Memory 780

FIG. 7

US 9,317,456 B2

1
METHOD AND SYSTEM FOR PERFORMING
EVENT-MATCHING WITH A GRAPHICAL
PROCESSING UNIT

This application claims the benefit of Indian Patent Appli-
cation No. 3054CHE/2010, filed Oct. 18, 2010, which is
hereby incorporated by reference in its entirety.

BACKGROUND

Complex Event Processing (“CEP”) is an event processing
concept that deals with the task of processing multiple events
(i.e., an event cloud) with the goal of identifying meaningful
events within the event cloud. The event cloud may, for
example, be an incoming stream of data received by an appli-
cation and a CEP system may identify complex sequences of
events in real-time. CEP systems employ techniques such as
detection of complex patterns of events, event correlation and
abstraction, event hierarchies, and relationships between
events such as causality, membership and timing, and event-
driven processes. CEP systems may be used to discover infor-
mation trends contained in the events happening across all
layers in an organization and then analyze an event’s impact
from a macro level as a “complex event.” Thus, action may be
take in real-time to respond to the complex event.

CEP is becoming crucial in enterprise-scale applications.
However, processing the multitude of events that stream into
an enterprise system within the least possible time is a daunt-
ing task. Current enterprise-scale applications desire a rate of
gigabytes per second (“GB/sec”). Algorithms and systems
have aspired to achieve high scalability and high performance
but such systems are complex and expensive. The main com-
ponent of a CEP system is event matching, for example uti-
lizing a correlation engine (“CE”) which matches and iden-
tifies patterns in the incoming event stream. The CE has to
process a large number of events per second and analyze
different event processing strategies. Hence, the CE has to
provide high scalability, availability, and performance.

Systems and algorithms have been suggested in attempts to
achieve high scalability and performance. For example, “Fil-
tering Algorithms and Implementation for Very Fast Publish/
Subscribe Systems”, by F. Fabret, et al., AMC SIGMOND,
2001, the entire contents of which are incorporated herein by
reference, describes filtering algorithms and implementations
for a CEP system. “Parallel Event Processing for Content-
Based Publish/Subscribe Systems”, by A. Farroukh, et al.,
AMC DEBS 2009, the entire contents of which are incorpo-
rated herein by reference, describes a parallel matching
engine for a CEP system which leverages chip multi-proces-
sors to increase throughput and reduce matching time. The
Fabret and Farroukh articles teach similar two-phase algo-
rithms for pattern matching and Farroukh additionally
teaches using event parallel processing.

The articles teach a two-phase algorithm for pattern match-
ing of events in a subscription system. According to the algo-
rithm, a predicate P, an access predicate, has to be matched
before a set of subscriptions can be satisfied. An action can be
taken on an event only if some condition is met. The algorithm
defines a subscription as a set of predicates of the form
{<attribute name> A, <value>V, <relational operator (e.g., <,
=,=)>R} and an event is defined by a set of {<attribute name>
A, <value> V}. Thus, an event is said to match a predicate
when Ale]=A[p] and V[e] R V][p]. In the first phase of the
algorithm, the algorithm creates a bit vector to keep track of
all predicates that are matched by an event and initializes the
bit vector to 0. For every event attribute, the algorithm hashes
the attribute name to determine the table holding the attribute

10

15

20

25

30

35

40

45

50

55

60

65

2

and the resulting table is accessed. Entries matched by this
attribute are then indexed and corresponding bits in the bit
vector are set to 1. In the second phase, the list of access
predicates is traversed and matched against the bit vector.
When an access predicate matches a corresponding bit vector
(i.e., the corresponding bit vector position is set to 1), each set
of methods is evaluated. If no match is found, no method is
processed.

In a CEP system, maximum time and resources are con-
sumed in the matching and processing engine that connects
decoupled entities/events. A CEP system can increase
throughput of event processing by utilizing a chip-multipro-
cessor’s multiple cores or grid computing to handle these
heavy computations in parallel. Still, implementing CEP sys-
tems on conventional hardware, such as chip-multiproces-
sors, using naive multithreading is expensive and greater
event matching speeds are desired.

SUMMARY

According to embodiments, a computer-implemented
method for event matching in a complex event processing
system includes receiving, with a computer processing
device, a stream of event data; receiving, with a computer
processing device, an event list and an access predicate list,
wherein the event list includes one or more event data pairs;
and identifying, with a graphical processing device, patterns
in the stream of event data.

According to embodiments, a computing device for imple-
menting a complex event processing system includes a pro-
cessing device executing instructions; and a graphical pro-
cessing device configured to receive instructions and a stream
of event data from the processing device and to identify
patterns in the stream of event data.

According to embodiments, computer readable instruc-
tions are stored on a non-transitory storage device, the com-
puter readable instructions configured to be processed by a
processor to instruct the processor to perform a method
including receiving, with a computer processing device, a
stream of event data; receiving, with a computer processing
device, an event list and an access predicate list, wherein the
event list comprises one or more event data pairs; and iden-
tifying, with a graphical processing device, patterns in the
stream of event data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary computing device for
implementing a CEP system including a graphical processing
unit for performing event-matching.

FIG. 2 conceptually illustrates an exemplary conventional
central processing unit.

FIG. 3 conceptually illustrates an exemplary graphical pro-
cessing unit.

FIG. 4 illustrates a general purpose graphical processing
unit software stack for allowing a central processing unit to
issue and manage computations on a graphical processing
unit.

FIG. 5 illustrates an exemplary central processing unit
operatively coupled to a graphical processing unit.

FIG. 6 illustrates an exemplary batch of threads comprising
a thread block.

FIG. 7 illustrates an exemplary graphical processing unit
thread’s access to memory spaces of various scopes.

While the method and system for performing event-match-
ing with a graphical processing unit is described herein by
way of example and embodiments, those skilled in the art will

US 9,317,456 B2

3

recognize that the method and system is not limited to the
embodiments or drawings described. It should be understood
that the drawings and description are not intended to limit
embodiments to the particular form disclosed. Rather, the
intention is to cover all modifications, equivalents and alter-
natives falling within the spirit and scope of the invention
defined by the appended claims. Any headings used herein are
for organizational purposes only and are not meant to limit the
scope of the description or the claims. As used herein, the
word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of a CEP method and system perform event-
matching utilizing graphical processing unit (“GPU”) hard-
ware. In this fashion, an event matching algorithm may pro-
vide a higher throughput of event processing than those
utilizing conventional chip multi-processors. Owing to a high
computation to communication ratio, utilizing a GPU for an
event-matching algorithm enables a CEP system to quickly
process large numbers of incoming events for high through-
put. Additionally, implementing a GPU for an event matching
algorithm is far more economical than multi-core processing
or grid computing.

GPUs were developed for conventional computing devices
for heavy and complex data processing required in the graph-
ics field. GPUs have evolved into highly parallel, multi-
threaded, many-core processors with tremendous computa-
tional power and very high memory bandwidth. In recent
years, GPUs have been recognized as incredible resources for
both graphics and non-graphics processing. GPUs are espe-
cially well-equipped to address problems that can be
expressed as data-parallel computations (i.e., the same pro-
gram is executed on many data elements in parallel) with high
arithmetic intensity (i.e., the ratio of arithmetic operations to
memory operations). Because the same program is executed
for each data element with different data, there is a lower
requirement for sophisticated flow control than with conven-
tional chip multi-processors. Additionally, because each pro-
gram is executed on many data elements and has high arith-
metic intensity, the memory access latency can be hidden
with calculations instead of big data caches as required by
conventional chip multi-processors.

Event matching in a CEP system may be implemented with
software executed on a computing device 110 of FIG. 1.
Computing device 110 has one or more processors such as
central processing unit (“CPU”) 111 designed to process
instructions, for example computer readable instructions
stored on a storage device 113. By processing instructions,
CPU 111 transforms underlying data to process instructions,
for example to instruct a GPU 115 to perform event-matching
in a CEP system. GPU 115 may be any GPU device that
supports general-purpose computing. Storage device 113
may be any type of storage device (e.g., an optical storage
device, amagnetic storage device, a solid state storage device,
etc.). Alternatively, instructions may be stored in remote stor-
age devices, for example storage devices accessed over a
network (e.g., the Internet). Computing device 110 addition-
ally has memory 112, and an input controller 116. A bus 114
operatively couples components of computing device 110,
including processor 111, memory 112, storage device 113,
input controller 116, GPU 115, and any other devices (e.g.,
network controllers, sound controllers, etc.). GPU 115 is
operatively coupled (e.g., via a wired or wireless connection)

10

15

20

25

30

35

40

45

50

55

60

65

4

to a display device 120 (e.g., a monitor, television, mobile
device screen, etc.) in such a fashion that display controller
115 can transform the display on display device 120 (e.g., in
response to modules executed). Input controller 116 is opera-
tively coupled (e.g., via a wired or wireless connection) to
input device 130 (e.g., mouse, keyboard, touch-pad, scroll-
ball, etc.) in such a fashion that input can be received from a
user. Computing device 110, display device 120, and input
device 130 may be separate devices (e.g., a personal computer
connected by wires to a monitor and mouse), may be inte-
grated in a single device (e.g., a mobile device with a touch-
screen having a mobile GPU), or any combination of devices
(e.g., a computing device operatively coupled to a touch-
screen display device, a plurality of computing devices
attached to a single display device and input device, etc.).

GPUs typically handle computations only for computer
graphics. General-purpose computing on GPUs, however, is
the technique of using a GPU to perform computations in an
application traditionally handled by a CPU. The highly par-
allel hardware ofa GPU enables a GPU to efficiently compute
complex algorithms. Initially, to perform general-purpose
computing on a GPU, computations were required to be
mapped to graphics application programming interfaces
(“APIs™). GPU architectures, for example the Compute Uni-
fied Device Architecture (“CUDA”) developed by NVIDIA®
for use with NVIDIA® GPUs, are hardware and software
architectures for issuing and managing computations on the
GPU as a data-parallel computing device without the need of
mapping computations to a graphics API. GPGPU architec-
tures provide extensions for high-level programming lan-
guages (e.g., C), to allow applications to directly utilize the
GPU without graphics APIs. Alternative architectures, APIs,
and programming languages may be supported, for example
OpenCL is an open standard supported by many companies.

Referring again to FIG. 1, for general-purpose computing
on GPU 115, GPU 115 runs as a co-processor to CPU 111.
GPU 115 may be referred to as a “device” while CPU 111
may be referred to as a “host”. Part of an application that can
be run many times on independent data can be executed by
GPU 115 via many parallel threads that achieve high through-
put. For example, FIG. 2 shows a conceptual illustration of a
conventional CPU having many transistors devoted to data
caching (e.g., cache 230) and flow control (e.g., control
device 210) and less transistors devoted to data processing
(i.e., few arithmetic logic units (“ALUs”) 220). In contrast,
FIG. 3 shows a conceptual illustration of a GPU 115 which is
designed for highly parallel computation and has more tran-
sistors devoted to data processing rather than data caching
and flow control. GPU 115 provides for many parallel
streams, with multiple control devices 320 and caches 310
and many AL Us 330 operatively coupled (e.g., via high band-
width bus lines which are not shown) to DRAM 340. For
example, a GPU made by NVIDIA® may have 240 cores on
a single chip and greater than 100 GB/sec bandwidth between
the chip and the graphics memory. Such a GPU may process
event-matching at 50-100 times the speed of a single core
CPU. Such a GPU may even process event-matching at 10
times the speed of two quad-core INTEL® XEON® proces-
sors. GPUs additionally may provide about 10 times the
improvement according to a price versus processing perfor-
mance ratio and are energy efficient.

FIG. 4 illustrates a GPU software stack 400 for allowing a
CPU 111 to issue and manage computations on GPU 115as a
data-parallel computing device. Parts of applications that can
be run many times on independent data can be executed on
GPU 115 via many parallel threads to achieve high through-
put. The GPGPU software stack 400 may include a hardware

US 9,317,456 B2

5

driver 410, an API and its runtime 420, and high level math-
ematical libraries 430 and application 440. High level math-
ematical libraries 430 may include common mathematical
functions, such as arithmetic and/or Boolean functions, use-
ful for performing event-matching in CEP systems.

The component of the program that is off-loaded from CPU
111 onto GPU 115 is the kernel. The kernel is the portion of
an application that is executed many times, but independently
on different data. The kernel can be isolated into a function
that is executed in parallel on GPU 115 as many different
threads. To that effect, such a function is compiled to the
instruction set of CPU 111 and the resulting program, the
kernel, is downloaded to GPU 115. Both CPU 111 and GPU
115 may maintain their own DRAM. Data may then be copied
from one DRAM to the other through optimized API calls that
utilize a high-performance Direct Memory Access (“DMA™)
engine of GPU 115.

FIG. 5 illustrates a kernel 530 executed by CPU 111. Both
GPU 115 and CPU 111 have their own DRAM. CPU 111 has
memory 112 as shown in FIG. 1. GPU 115 has DRAM 340
(shown in FIG. 3). When kernel 530 is executed on CPU 111,
APIs can copy data in either direction between memory 112
and DRAM 340, for example via a high bandwidth bus line or
by utilizing a DMA engine.

Referring to FIG. 6, the batch of threads, such as threads
610-621, that execute kernel 530 is organized as a grid 511 of
thread blocks, such as thread blocks 511-516. The threads
(e.g., threads 610-621) making up each block (e.g., block
511) cooperate together by efficiently sharing data through
some fast shared memory (e.g., shared memory 720, shown in
FIG. 7). Threads may synchronize their execution to coordi-
nate memory access. Kernel 530 may specity synchroniza-
tion points, thereby suspending selected ones of threads 610-
621 until each thread 610-621 reaches a synchronization
point.

Each thread is associated with a unique thread 1D, local to
a block. An application may specify a block as a two- or
three-dimensional array of arbitrary size and identify each
thread using a two- or three-component index. For a two-
dimensional block of size (D,, D,), the thread ID of a thread
of'index (X, y) may be (x+y D,) and for a three-dimensional
array, the thread ID of a thread of index (%, y, z) may be (x+y
D+zD. D).

Eachblock (e.g., block 511) may contain a limited number
of threads depending on the hardware. Blocks having the
same dimensions (i.e., the same number of threads) may be
batched together to form a grid of blocks. As shown in FIG. 5,
blocks 511-516 having the same dimensions (i.e., the same
number of threads) are batched together to form grid 510. In
like fashion, blocks 522 of a second dimension are batched
together to form grid 521. By batching blocks of the same
dimensions together, the total number of threads that can be
launched in a single kernel invocation is increased. Thus,
threads within the same grid may communicate and synchro-
nize with each other.

FIG. 7 shows a conceptual illustration of CPU 111 opera-
tively coupled to GPU 115 via bus 114. GPU 115 may include
one or more grids, for example grid 510. Each grid may
include one or more thread blocks, for example grid 510
includes blocks 511 and 512. Each thread block may include
one or more threads, for example block 511 includes threads
610 and 611.

FIG. 7 also conceptually shows how each thread has access
to GPU 115°s DRAM and on-chip memory through a set of
memory spaces of various scopes. Each of the threads 610,
611, 771 and 772 has private local memory, for example
thread 610 has local memory 730 that only thread 610 may

10

15

20

25

30

35

40

45

50

55

60

65

6

utilize (i.e., thread 611 cannot read or write to local memory
730). Each thread also has a 32-bit register, for example
register 710. Each of the threads 610, 611, 771 and 772 block
has shared memory visible to all threads of the block, for
example block 511 has shared memory 720 that threads 610
and 611 can read from and write to but threads outside block
511, such as thread 771, cannot read or write to shared
memory 720. GPU 115 also includes global memory 740
which every thread may read or write to, constant memory
750 which every thread may read from, and texture memory
760 which every thread may read from. The shared memory
and registers, as well as a read-only constant cache (not
shown) and a read-only texture cache (not shown) may be
on-chip memory. The local and global memory spaces may be
implemented as read-write regions of GPU memory that are
not cached (e.g., read-write regions of DRAM 340 shown in
FIG. 3). The constant memory 750 and texture memory 760
spaces may be implemented as read-only regions of GPU
memory (e.g., read-only regions of DRAM 340 shown in
FIG. 3).

Embodiments of methods and systems for implementing
event matching on a GPU may be selectively chosen depend-
ing on a number of events to be processed.

Embodiments may process multiple events per thread (i.e.,
inter task parallelism), thereby providing a high throughput
for processing many parallel events. By allowing threads to
work independently on separate events, the total matching
time and throughput are increased. Such embodiments may
be implemented in systems receiving event data at a rate of
GB/sec. In these embodiments, each thread in GPU 115 may
be assigned a group of events and execute an event matching
algorithm. In a first phase of this embodiment, every thread
(e.g., thread 610) may pick up an event and compute a bit
vector and store it in the thread’s local memory (e.g., local
memory 730). For every event attribute, the algorithm may
hash the attribute name to determine the table holding the
attribute and the resulting table may be accessed. Entries of
the table matched by the attribute may then be indexed and
corresponding bits in the bit vector may be set to 1. In a
second phase of these embodiments, the thread traverses an
access predicate list and each access predicate is evaluated
against the bit vector. The thread then saves the matches.
When an access predicate matches a corresponding bit vector
(i.e., the corresponding bit vector position is set to 1), each set
of methods is evaluated.

The following pseudo code may be useful for implement-
ing such embodiments:

Step 1: Load an Event List E(i) in a GPU’s global memory
(e.g., by using the CUDA function cudamemcpy()).

Step 2: For each thread, load one Event Data E {A, V} pair
and the access predicate list in the thread’s local memory.

Step 3: Initialize a bit vector the size of the number of
predicates in the access predicate list Number_of_Predicates
(N)) to 0 in the thread’s local memory.

Step 4: In each thread, execute the event matching algo-
rithm.

Phase 1: Generate a bit vector of corresponding predicates.

Phase 2: Traverse the access predicate list and for each
access predicate compute the final result of a Boolean func-
tion (e.g., a comparative function) whether a match is found.

Step 5: Iterate through all events in the Event List.

Other embodiments may process a single event per thread
or block of threads (i.e., intra task parallelism). Thus, by
multiple threads working collaboratively on a single event,
the processing time for that event may be reduced. In these
embodiments, each thread in GPU 115 may be assigned a
group of predicates and execute an event matching algorithm

US 9,317,456 B2

7

to evaluate matches with the event. Fach thread may set
corresponding bits in a bit vector stored in the thread’s local
memory (e.g., local memory 730) to 1 to indicate a match.
After all threads have executed the event matching algorithm,
the bit vectors in each thread’s local memory are merged into
a global bit vector stored in a GPU’s global memory (e.g.,
global memory 740). The access predicate list is then split
into chunks across the threads and each thread evaluates the
chunk of access predicates against the bit vector and saves the
matches.

The following pseudo code may be useful for implement-
ing such embodiments:

Step 1: Load the Event List E(i) ina GPU’s global memory.

Step 2: Allocate either a warp of threads (16 threads) or a
block of threads (e.g., a number of threads=512) per event.

Step 3: Load the Event Data E {A, V} and access predicate
list in the warp or block of thread’s shared memory (e.g.,
shared memory 720) or in the GPU’s global memory (e.g.,
global memory 740) and initialize a bit vector in the warp or
block of threads to 0.

Step 4: In each thread in the warp or block of threads,
receive a group of predicates and compute the result of a
Boolean function to determine whether a match is found and
set corresponding partial bit vectors in the thread’s local
memory (e.g., local memory 730).

Step 5: Synchronize threads until all remaining threads fill
their respective partial bit vectors. Upon synchronization,
merge each thread’s partial bit vector to form a global bit
vector in global memory (e.g., memory 740).

Step 6: Split the access predicate into chunks across dif-
ferent threads and compute for each thread whether a match is
found.

Of course, while multiple embodiments are disclosed, one
of ordinary skill in the art understands that variations or
combinations of these embodiments may be implemented as
well. For example, a hybrid technique may combine the
embodiments to provide flexibility of reducing the matching
time of a single event or increasing overall throughput.

According to embodiments, grid dimensions, for example
dimensions of grid 510 shown in FIG. 5, may be selected to
substantially utilize maximum GPU resources at all times
(i.e., to keep the GPU busy). For example, for a grid having
dimensions X blocks long andY blocks wide, X and Y may be
chosen both so that X*Y can handle the average number of
events entering the CEP system but also to utilizes substan-
tially all, or at least a significant amount of, GPU resources.
Forexample, in a CEP system receiving an average number of
events N, the number of blocks in a grid may be chosen to
satisfy the relation X*Y=<N.

While this disclosure generally refers to a GPU having
DRAM, one of ordinary skill in the art understands that the
GPU and DRAM may not be integrated within a single chip.
One or more memory chips may be physically separate from
the GPU and operatively coupled thereto, for example via a
high-bandwidth bus line.

The invention has been described through embodiments.
However, various modifications can be made without depart-
ing from the scope of the invention as defined by the appended
claims and legal equivalents.

What is claimed is:
1. A method for event matching in a complex event pro-
cessing system, the method comprising:
obtaining, by a graphical processing unit of an event
matching computing device, one or more current events,
and assigning two or more threads of the graphical pro-
cessing unit to the obtained one or more current events,

5

10

20

30

35

40

45

50

60

8

wherein the two or more threads share a common cache,
the one or more current events comprising one or more
attributes;

identifying, by the graphical processing unit, one or more

existing events corresponding to the obtained one or
more current events; and
allocating, by the graphical processing, the identified one
or more existing events to the assigned two or more
threads based on a correspondence between the identi-
fied one or more existing events and the obtained one or
more current events, wherein the correspondence
between the identified one or more existing events and
the obtained one or more current events comprises a
match between one or more current event attributes
associated with the obtained one or more current events
and one or more existing event attributes associated with
the one or more existing events and wherein each of the
assigned two or more threads executes at least one of the
obtained one or more current events and the correspond-
ing identified at least one existing event.
2. The method as set forth in claim 1 wherein the identify-
ing further comprises:
identifying, by the graphical processing unit, one or more
tables with one or more stored attributes exactly match-
ing the one or more attributes in the each of the obtained
one or more events by hashing the one or more attributes;

creating, by the graphical processing unit, a bit vector for
each of the identified one or more tables exactly match-
ing the one or more attributes; and

storing, by the graphical processing unit, an index in the

created bit vector indicating the exact match.

3. The method as set forth in claim 2 further comprising
merging, by the graphical processing unit, the created bit
vector for each of the identified one or more tables into a
single bit vector.

4. The method as set forth in claim 2 further comprising:

obtaining, by the graphical processing unit, a stored access

predicate list comprising the one or more existing
events; and

identifying, by the graphical processing unit, for one or

more exact matches between the one or more existing
events with one or more bit vector contents by compar-
ing the one or more existing events against the one or
more bit vector contents.

5. The method as set forth in claim 4 further comprising
allocating, by the event matching computing device, the
assigned two or more threads to the one or more existing
events associated with the identified one or more matches.

6. A non-transitory computer readable medium having
stored thereon instructions for event matching in a complex
event processing system comprising machine executable
code which when executed by at least one graphical process-
ing unit, causes the graphical processing unit to perform steps
comprising:

obtaining one or more current events, and assigning two or

more threads of the graphical processing unit to the
obtained one or more current events, wherein the two or
more threads share a cache, the one or more current
events comprising one or more attributes;

identifying one or more existing events corresponding to

the obtained one or more current events; and
allocating the identified one or more existing events to the
assigned two or more threads based on a correspondence
between the identified one or more existing events and
the obtained one or more current events, wherein the
correspondence between the identified one or more
existing events and the obtained one or more current

US 9,317,456 B2

9

events comprises a match between one or more current
event attributes associated with the obtained one or more
current events and one or more existing event attributes
associated with the one or more existing events and
wherein each of the assigned two or more threads
executes at least one of the obtained one or more current
events and the corresponding identified at least one
existing event.
7. The medium as set forth in claim 6 wherein the identi-
fying further comprises:
identifying one or more tables with one or more stored
attributes exactly matching the one or more attributes in
the each of the obtained one or more events by hashing
the one or more attributes;
creating a bit vector for each of the identified one or more
tables exactly matching the one or more attributes; and
storing an index in the created bit vector indicating the
exact match.
8. The medium as set forth in claim 7 further comprising
merging the created bit vector for each of the identified one or
more tables into a single bit vector.
9. The medium as set forth in claim 6 further comprising:
obtaining a stored access predicate list comprising the one
or more existing events; and
identifying for one or more exact matches between the one
or more existing events with one or more bit vector
contents by comparing the one or more existing events
against the one or more bit vector contents.
10. The medium as set forth in claim 9 further comprising
allocating the assigned two or more threads to the one or more
existing events associated with the identified one or more
matches.
11. An event matching computing device comprising:
a graphical processing unit and a memory coupled to the
graphical processing unit which is configured to be
capable of executing programmed instructions compris-
ing and stored in the memory to:
obtain one or more current events, and assigning two or
more threads of the graphical processing unit to the
obtained one or more current events, wherein the two
or more threads share a cache, the one or more current
events comprising one or more attributes;

identify one or more existing events corresponding to
the obtained one or more current events; and

allocate the identified one or more existing events to the
assigned two or more threads based on a correspon-
dence between the identified one or more existing

5

10

—_
w

20

25

30

35

40

45

10

events and the obtained one or more current events,
wherein the correspondence between the identified
one or more existing events and the obtained one or
more current events comprises a match between one
or more current event attributes associated with the
obtained one or more current events and one or more
existing event attributes associated with the one or
more existing events and wherein each ofthe assigned
two or more threads executes at least one of the
obtained one or more current events and the corre-
sponding identified at least one existing event.

12. The device as set forth in claim 11 wherein the graphi-
cal processing unit is further configured to be capable of
executing programmed instructions stored in the memory
comprising and stored in the memory for the identifying to:

identify one or more tables with one or more stored

attributes exactly matching the one or more attributes in
the each of the obtained one or more events by hashing
the one or more attributes;

create a bit vector for each of the identified one or more

tables exactly matching the one or more attributes; and
store an index in the created bit vector indicating the exact
match.

13. The device as set forth in claim 12 wherein the graphi-
cal processing unit is further configured to be capable of
executing execute programmed instructions stored in the
memory comprising and stored in the memory to:

merge the created bit vector for each of the identified one or

more tables into a single bit vector.

14. The device as set forth in claim 12 wherein the graphi-
cal processing unit is further configured to be capable of
executing execute programmed instructions stored in the
memory comprising and stored in the memory to:

obtain a stored access predicate list comprising the one or

more existing events; and

identify for one or more exact matches between the one or

more existing events with one or more bit vector con-
tents by comparing the one or more existing events
against the one or more bit vector contents.

15. The device as set forth in claim 14 wherein the graphi-
cal processing unit is further configured to be capable of
executing execute programmed instructions stored in the
memory comprising and stored in the memory to:

allocate the assigned two or more threads to the one or

more existing events associated with the identified one
or more matches.

#* #* #* #* #*

